Abstract
C++0x Concepts had a feature Concept Maps
that allowed a set of functions, types, and template definitions to be associated with a concept and the map to be specialized for types that meet the concept.
This allowed open extension of a concept.
A definition could be provided that allows an algorithm to operate in terms of the API a concept presents and the map would define how those operations are implemented for a particular type.
- This is similar to how Haskell’s
typeclass
works.
Lost with Concepts-Lite
The feature was very general, and lost as part of the Concepts-Lite
proposal that was eventually adopted.
This loss of a level of indirection means that the APIs for a concept must be implemented by those names for a type, even when those names are not particularly good choices in the natural domain of a type rather than in the domain as a concept.
The proliferation of transform
functions for functorial map
is such a problem.
It is also a problem when adapting types that are closed for extension or do not permit member functions.
Why?
-
Don’t know if you should
- Need to know if you could first
Alternatives
-
Virtual Interface
-
Adapters
- Collection of CPOs
Hard to Support
Example from C++0x Concepts
Student Record
class student record { public: string id; string name; string address; bool id_equal(const student record&); bool name_equal(const student record&); bool address_equal(const student record&); };
Equality Comparable
concept_map EqualityComparable<student record>{ bool operator==(const student record& a, const student record& b){ return a.id_equal(b); } };
Allow associated types
Very useful for pointers
concept_map BinaryFunction<int (*)(int, int), int, int> { typedef int result_type; };
Why Didn’t We Get Them?
Let’s not go there right now.
State of the Art
Rust Traits
trait PartialEq { fn eq(&self, rhs: &Self) -> bool; fn ne(&self, rhs: &Self) -> bool { !self.eq(rhs) } }
C++ CPOs
Some Concepts and Types
namespace N::hidden { template <typename T> concept has_eq = requires(T const& v) { { eq(v, v) } -> std::same_as<bool>; }; struct eq_fn { template <has_eq T> constexpr bool operator()(T const& x, T const& y) const { return eq(x, y); } }; template <has_eq T> constexpr bool ne(T const& x, T const& y) { return not eq(x, y); } template <typename T> concept has_ne = requires(T const& v) { { ne(v, v) } -> std::same_as<bool>; }; struct ne_fn { template <has_ne T> constexpr bool operator()(T const& x, T const& y) const { return ne(x, y); } }; } // namespace N::hidden
See Why tag_invoke is not the solution I want by Barry Revzin https://brevzin.github.io/c++/2020/12/01/tag-invoke/
C++ partial_equality
namespace N { inline namespace function_objects { inline constexpr hidden::eq_fn eq{}; inline constexpr hidden::ne_fn ne{}; } // namespace function_objects template <typename T> concept partial_equality requires(std::remove_reference_t<T> const& t) { eq(t, t); ne(t, t); }; } // namespace N
See Why tag_invoke is not the solution I want by Barry Revzin https://brevzin.github.io/c++/2020/12/01/tag-invoke/
Requirements for Solution
-
Tied to the type system
-
Automatable
- “zero” overhead
-
no virtual calls
- no type erasure
-
What does typeclass do?
Adds a record to the function that defines the operations for the type.
Can we do that?
Type-based lookup
Templates!
Additional Requirements
Avoid ADL
Object Lookup rather than Overload Lookup
Variable templates
Variable templates have become more powerful
We can have entirely distinct specializations
A Step Towards Implementation
template <class T> concept partial_equality = requires( std::remove_reference_t<T> const& t) { { partial_eq<T>.eq(t, t) } -> std::same_as<bool>; { partial_eq<T>.ne(t, t) } -> std::same_as<bool>; };
partial_eq<T>
An inline variable object
template<class T> constexpr inline auto partial_eq = hidden::partial_eq_default;
A default implementation
constexpr inline struct partial_eq_default_t { constexpr bool eq(has_eq auto const& rhs, has_eq auto const& lhs) const { return (rhs == lhs); } constexpr bool ne(has_eq auto const& rhs, has_eq auto const& lhs) const { return (lhs != rhs); } } partial_eq_default;
New has_eq
template <typename T> concept has_eq = requires(T const& v) { { operator==(v, v) } -> std::same_as<bool>; };
Will do better
In a bit
Monoid
A little more than you think.
- A type
- With an associative binary operation
- Which is closed
- And has an identity element
Maybe not a lot more
Math
- \(\oplus: M \times M \rightarrow M\)
- \(x \oplus (y \oplus z) = (x \oplus y) \oplus z\)
- \(1_M \in M\) such that \(\forall m \in M : (1_M \oplus m) = m = (m \oplus 1_M)\)
Function form
- \(f : M \times M \rightarrow M\)
- \(f(x, f(y, z)) = f(f(x, y), z)\)
- \(1_M \in M\) such that \(\forall m \in M : f(1_M, m) = m = f(m, 1_M)\)
The similarity to left and right fold is NOT an accident
Core Functions
- \(empty : m\)
- \(empty = concat \, []\)
- \(concat : [m] \rightarrow m\)
- \(fold \, append \, empty\)
- \(append : m \rightarrow m \rightarrow m\)
- \(op\)
Note that it’s self-referential
This is common
From Haskell Prelude
class Semigroup a => Monoid a where mempty :: a mempty = mconcat [] mappend :: a -> a -> a mappend = (<>) mconcat :: [a] -> a mconcat = foldr mappend mempty
Minimum Set
\(empty \, | \, concat\)
In C++
template <typename T, typename M> concept MonoidRequirements = requires(T i) { { i.identity() } -> std::same_as<M>; } || requires(T i, std::ranges::empty_view<M> r1) { { i.concat(r1) } -> std::same_as<M>; };
I am ignoring all sorts of const volatile reference issues here.
Implementing the other side
The Map for a Monoid
template <class Impl> requires MonoidRequirements< Impl, typename Impl::value_type> struct Monoid : protected Impl { auto identity(this auto&& self); template <typename Range> auto concat(this auto&& self, Range r); auto op(this auto&& self, auto a1, auto a2); };
empty is a terrible name, concat only a little better. empty becomes identity
identity
auto identity(this auto && self) { std::puts("Monoid::identity()"); return self.concat(std::ranges::empty_view<typename Impl::value_type>{}); }
concat
template<typename Range> auto concat(this auto&& self, Range r) { std::puts("Monoid::concat()"); return std::ranges::fold_right(r, self.identity(), [&](auto m1, auto m2){return self.op(m1, m2);}); }
op
auto op(this auto&& self, auto a1, auto a2) { std::puts("Monoid::op"); return self.op(a1, a2); }
Deducing this
and CRTP
We’ll see in a moment, but it’s because we want to constraint the required implementation.
We want to use the derived version which has all of the operations.
Plus
template <typename M> class Plus { public: using value_type = M; auto identity(this auto&& self) -> M { std::puts("Plus::identity()"); return M{0}; } auto op(this auto&& self, auto s1, auto s2) -> M { std::puts("Plus::op()"); return s1 + s2; } };
PlusMonoidMap
template<typename M> struct PlusMonoidMap : public Monoid<Plus<M>> { using Plus<M>::identity; using Plus<M>::op; };
Need to pull the operations from the Monoid instance into the Map, so we get the right ones being used by concat.
This might be simpler if we didn’t allow choice of the basis operations, but that’s also overly restrictive.
The map instances
template<class T> auto monoid_concept_map = std::false_type{}; template<> constexpr inline auto monoid_concept_map<int> = PlusMonoidMap<int>{}; template<> constexpr inline auto monoid_concept_map<long> = PlusMonoidMap<long>{}; template<> constexpr inline auto monoid_concept_map<char> = PlusMonoidMap<char>{};
Can we concat
instead?
class StringMonoid { public: using value_type = std::string; auto op(this auto&&, auto s1, auto s2) { std::puts("StringMonoid::op()"); return s1 + s2; } template <typename Range> auto concat(this auto&& self, Range r) { std::puts("StringMonoid::concat()"); return std::ranges::fold_right( r, std::string{}, [&](auto m1, auto m2) { return self.op(m1, m2); }); } };
No, I’m not properly constraining Range here. No, I’m not actually recommending this as an implementation.
The Map and instance
struct StringMonoidMap : public Monoid<StringMonoid> { using StringMonoid::op; using StringMonoid::concat; }; template<> constexpr inline auto monoid_concept_map<std::string> = StringMonoidMap{};
Some simple use
Exercise the functions
template<typename P> void testP() { auto d1 = monoid_concept_map<P>; auto x = d1.identity(); assert(P{} == x); auto sum = d1.op(x, P{1}); assert(P{1} == sum); std::vector<P> v = {1,2,3,4}; auto k = d1.concat(v); assert(k == 10); }
Some simple cases
std::cout << "\ntest int\n"; testP<int>(); std::cout << "\ntest long\n"; testP<long>(); std::cout << "\ntest char\n"; testP<char>();
On std::string
This will use the StringMonoid we defined a few moments ago.
auto d2 = monoid_concept_map<std::string>; std::cout << "\ntest string\n"; auto x2 = d2.identity(); assert(std::string{} == x2); auto sum2 = d2.op(x2, "1"); assert(std::string{"1"} == sum2); std::vector<std::string> vs = {"1","2","3","4"}; auto k2 = d2.concat(vs); assert(k2 == std::string{"1234"});
Note that the map type is mostly invisible.
Results
test int
Plus::identity() Plus::op() Monoid::concat() Plus::identity() Plus::op() Plus::op() Plus::op() Plus::op()
test long
Plus::identity() Plus::op() Monoid::concat() Plus::identity() Plus::op() Plus::op() Plus::op() Plus::op()
test char
Plus::identity() Plus::op() Monoid::concat() Plus::identity() Plus::op() Plus::op() Plus::op() Plus::op()
test string
Monoid::identity() StringMonoid::concat() StringMonoid::op() StringMonoid::concat() StringMonoid::op() StringMonoid::op() StringMonoid::op() StringMonoid::op()
Monoid in Trees
Foldable generalizes
Folding is very much tied to Range like things.
It can, and has, been generalized to things that can be traversed.
monoids
are still critical for Traversables.
Summarizing Data in a tree
If the summary type is monoidal, nodes can hold summaries of all the data below them.
fingertrees
Much of the flexibility of fingertrees
comes from the monoidal tags.
They are also fairly complicated.
Technique can be applied to other, simpler trees.
P3200 (eventually) ((C++29))
fringe-tree
Simplified tree with data at the edges
Code
Show the monoid-map branch of
Summary for Concept Maps
Tell you what I told you
- Variable templates for map lookup
- Named operations on the map object
- Open for extension
- Concept checkable implementations
- Decoupled map use and implementation
Questions?
Or comments
Leave a Reply